

NGO perspective on CCS @mariusholm

Figure I.1 Cumulative CO₂ reductions by sector and technology in the 2DS to 2050

Key point

A portfolio of low-carbon technologies is needed to reach the 2DS; some solutions will be broadly applicable, while others will need to target specific sectors.

CO₂ reserves: 3000 gigatons

Budget: 900 gigatons CO₂

Limitations on fossil fuels? - «Highly unlikely»

But what is «likely» in energy markets?

IEA – New policies scenario: Electricity generation (TWh)

Ŏ

ZERO

()

Germany: From "displacing peak" to "disrupting base load"

()

Germany: From "displacing peak" to "disrupting base load"

Solar energy insufficient alone

The input was hydrocarbons

The input will be capital

Case 1: Industry, concentrated CO₂

Case 2: Petroleum industry

Case 3: Industry, very large emissions

CCS potential:

- Iron and steel: ~2,3 Gt/y (30 % of industry emissions)
- Cement: ~2 Gt/y (26 % of industry emissions)

Advantages:

- High CO₂ concentration = lower capture cost
- Excess heat can be used for CO₂ capture
- CCS only mitigation option for the process emissions
- But: Steel need new built/refurbished plant to get high concentrated CO₂ for suitable/cheaper CO₂ capture.

Examples:

Norcem Heidelberg cement plant, Norway

ArcelorMittal/ULCOS CCS demo project

Case 4: Integrated CCS, supply to energy-intensive industry

- 1. Energy intensive cluster, with heat as a major supply
- 2. Power intensive industry (aluminium)

Advantages:

- · High base load power and heat demand
- Excess heat from industry for CO₂ capture process
- Large emissions in small area gives lower cost for transportation and storage
- Existing industry infrastructure can give lower cost for building, operations and utilities
- But: Energy is major cost & competition factor for these industries. Higher energy cost with CCS

Examples:

Qatalum Aluminium and CCGT Qatar

Case 5: Power plants where no renewable alternatives exist

Technical limitations:

- Limited grid capacity for power transfer
- Limited renewable potential compared to energy need
- Volatile renewable production *can* need fossil base load/backup for security of supply

Political limitations:

- Political inertia for changes delaying fossil fuel phase-out.
- Large fossil resources/economic investments/ jobs, delaying renewable implementation

Advantages:

- No alternative or high cost for other mitigations options can give good conditions for CCS.
- Large fossil (coal) reserves with no/low alternative value, can give high willingness to invest in CCS
- But: Political inertia for changes can be challenging for large CCS investments.
- Flexible fossil production as backup/peak power can give increased cost for CCS

Examples:

Boundary dam CCS, Canada

Case 6: Bio-CCS

Case 7: CO₂ EOR

Capture unit	recycle	Brine	 than 40 years EOR has been the single largest driver for CCS so far (in US, Canada) Value for CO₂ to EOR in the range of 30-40 \$/ton
CO2	Confining system Reservoir	Oil CO ₂	 CO₂ But: Geographically and volume limitations for how much CO₂ potentially to be used for EOR
CS potential: 50 largest oil basins can store 140 Gt CO ₂ with "state-of-the-art" CO ₂ -EOR technology. Large potential income covers CCS cost: 470 bn barrels of added oil Applied to smaller fields: 320 Gt CO ₂ storage > 1 trillion barrels of oil			Examples: >100 ongoing CO ₂ EOR projects in USA

Policy recommendations - globally

Mandatory certificate system

EPS for power plants (and industry)

Government funding / involvement for storage

The certificate system

Carbon up = Carbon down

A mandatory market mechanism

Politically decided volume

Making profit on CO_2 uptake = buying certificates

Capturing and storing CO_2 = awarded certificates

The certificate system

