

NGO perspective on CCS

 @mariusholm
Total GHG Emissions in all AR5 Scenarios

Figure I. 1

Cumulative CO_{2} reductions by sector and technology in the 2DS to 2050

Key point A portfolio of low-carbon technologies is needed to reach the 2DS; some solutions will be broadly applicable, while others will need to target specific sectors.

CO_{2} reserves: 3000 gigatons

Budget: 900
gigatons CO_{2}

Limitations on fossil fuels? - «Highly unlikely»

But what is «likely» in energy markets?

IEA - New policies scenario: Electricity generation (TWh)

Annual installation of solar PV (GW)

Annual installation of solar PV (GW)

- IEA Forecast new policy

Germany: From "displacing peak" to "disrupting base load"

"Today"
Solar PV displacing gas-powered
peaking power

Germany: From "displacing peak" to "disrupting base load"

"Today"
Solar PV displacing gas-powered peaking power

Scatec

Solar energy insufficient alone

Erneuerbare Erzeugung und Strombedarf, 2022, Meteo-Jahr 2011, 46. Kalenderwoche

The input was hydrocarbons

The input will be capital

Case 1: Industry, concentrated CO_{2}

- CO_{2} emission volume: 0,7-4,5 Mtly
- CO_{2} concentration typically $30-100 \%$

Examples:

- Fertiliserslammonia
- Hydrogen production
- Chemical industry

CCSPotential

Advantages:

- Lower capture cost
- Stable CO_{2} source
- Located in industrial clusters/coastal locations \Rightarrow possible lower transport cost
- Industrial experience from commercial use
- Excess energy for CO_{2} capture

Example:

Ammonia plant, Yara Norway

- ~1,2 Mt CO2/y
- 0,8 Mt captured
- ~0,2-0,3 Mt sold
- Rest is emitted

Case 2: Petroleum industry

Case 3: Industry, very large emissions

Cement:

Steel:

CCS potential:

- Iron and steel: ~2,3 Gt/y (30 \% of industry emissions)
- Cement: ~2 Gtly (26 \% of industry emissions)

Advantages:

- High CO_{2} concentration = lower capture cost
- Excess heat can be used for CO_{2} capture
- CCS only mitigation option for the process emissions
- But: Steel need new built/refurbished plant to get high concentrated CO_{2} for suitable/cheaper CO_{2} capture.

Examples:

Norcem Heidelberg cement plant, Norway

ArcelorMittal/ULCOS CCS demo project

Case 4: Integrated CCS, supply to energy-intensive industry

1. Energy intensive cluster, with heat as a major supply
2. Power intensive industry (aluminium)

Advantages:

- High base load power and heat demand
- Excess heat from industry for CO_{2} capture process
- Large emissions in small area gives lower cost for transportation and storage
- Existing industry infrastructure can give lower cost for building, operations and utilities
- But: Energy is major cost \& competition factor for these industries. Higher energy cost with CCS

Examples:

[^0]
Case 5: Power plants where no renewable alternatives exist

Technical limitations:

- Limited grid capacity for power transfer
- Limited renewable potential compared to energy need
- Volatile renewable production can need fossil base load/backup for security of supply

Political limitations:

- Political inertia for changes delaying fossil fuel phase-out.
- Large fossil resources/economic investments/ jobs, delaying renewable implementation

Advantages:

- No alternative or high cost for other mitigations options can give good conditions for CCS.
- Large fossil (coal) reserves with nollow alternative value, can give high willingness to invest in CCS
- But: Political inertia for changes can be challenging for large CCS investments.
- Flexible fossil production as backup/peak power can give increased cost for CCS

Examples:

Boundary dam CCS, Canada

Case 6: Bio-CCS

Case 7: $\mathrm{CO}_{2} \mathrm{EOR}$

CCS potential:

- 50 largest oil basins can store $140 \mathrm{Gt} \mathrm{CO}_{2}$ with "state-of-the-art" CO_{2}-EOR technology.
- Large potential income covers CCS cost: 470 bn barrels of added oil
- Applied to smaller fields:
- $320 \mathrm{Gt} \mathrm{CO}_{2}$ storage
- >1 trillion barrels of oil

Advantages:

- CO_{2} EOR been in use commercial in US for more than 40 years
- EOR has been the single largest driver for CCS so far (in US, Canada)
- Value for CO_{2} to EOR in the range of 30-40 \$/ton CO_{2}
- But: Geographically and volume limitations for how much CO_{2} potentially to be used for EOR

Examples:

>100 ongoing CO_{2} EOR projects in USA

Policy recommendations - globally

Mandatory certificate system

EPS for power plants (and industry)

Government funding / involvement for storage

The certificate system

Carbon up = Carbon down

A mandatory market mechanism

Politically decided volume

Making profit on CO_{2} uptake $=$ buying certificates

Capturing and storing $\mathrm{CO}_{2}=$ awarded certificates

The certificate system

[^0]: Qatalum Aluminium and CCGT Qatar

