

Results and Future Perspective of Membrane Consortium's Membrane Project

Norcem CCS conference, May 20-21, 2015, Langesund

May-Britt Hägg, Xuezhong He (NTNU) Martijn Huibers (DNV GL)

www.ntnu.no

Outline of presentation

- $\clubsuit Membrane consortium for Norcem CO_2 capture$
- ✤ Background on CO₂ capture
- Challenges
- Testing results
- \clubsuit Viability analysis on membranes for CO₂ capture
- Future perspectives

Membrane consortium

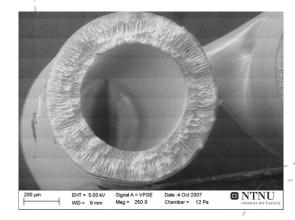
 DNV GL – independent support Coordinator, system operation
 Yodfat Engineers – specialty engineering System and module design and construction
 NTNU/SINTEF – core technology Membrane preparation and system operation

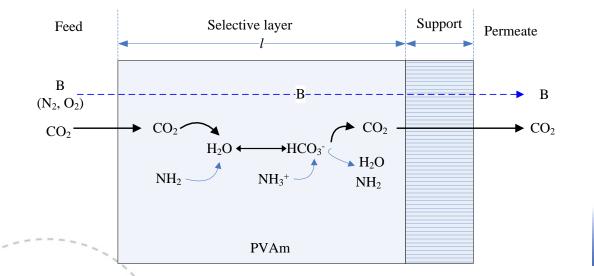
CO₂ capture technology

CO ₂ Capture Technology								
Post-combustion	ı	Pre-com	bustion		Oxyfuel ombustion	Industrial g separation		
Separation Methods								
Chemical and physical absorption		Physical dsorption Membrar		ne	Cryogeni distillatio		Chemical looping	
•		M	aterials	Ļ	•			
 MEA, MDEA Selexol, Rectosil ILs 	•	Micropol materials Zeolite, M PSA, TSA	iOFs	Pol	organic lymeric brid	 Metal oxid CuO 	les	

Membrane-based CO₂ capture benefits

- <u>high energy efficiency</u>: no phase change is required to achieve separation
- <u>modularity</u>: scalable construction and operation, high flexibility
- <u>green character</u>: neither chemicals nor regeneration steps required
- <u>reliability</u>: no moving parts in the core technology (only in supporting compressors/pumps)
- <u>small footprint</u>: compact installations instead of e.g. large/tall towers


Core tech: Fixed-site-carrier (FSC) membranes


✓ <u>1st step (→2008)</u>: Lab, diameter 5-7 cm

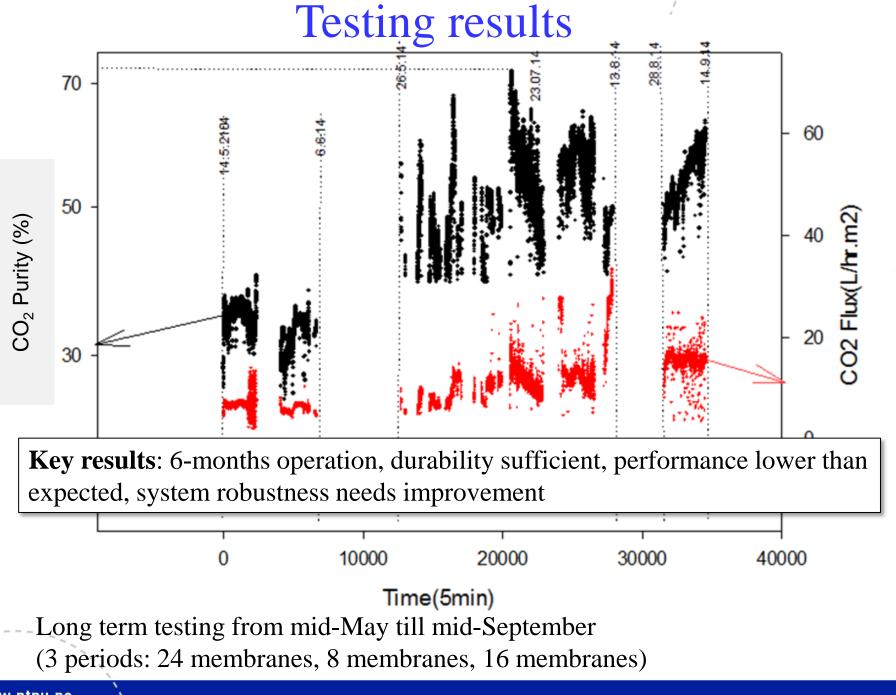
✓ 2nd step (→2012): Small bench-pilot, Flat sheets, $0.5 - 2m^2$

Hollow fibers (up-scaling)

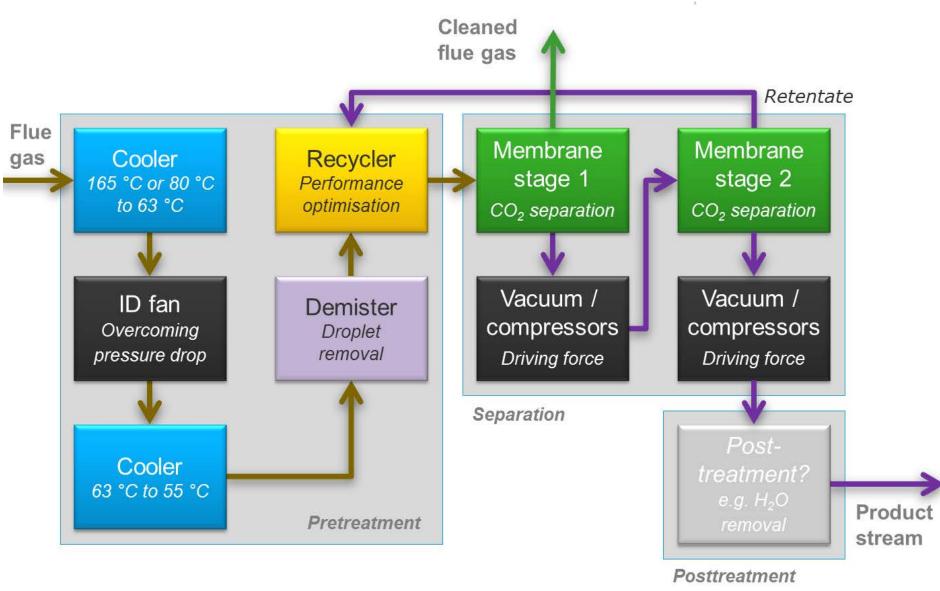
 $J_{A} = \frac{D_{A}}{l} \left(c_{A,0} - c_{A,l} \right) + \frac{D_{A,c}}{l} \left(c_{AC,0} - c_{AC,l} \right)$

1st term: Fickian diffusion, 2nd term: facilitated transport

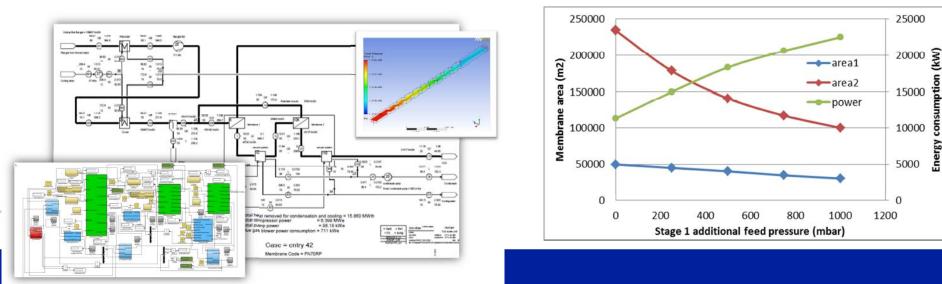
Membrane system


- Remotely monitored container
- Temperature and humidity control
- Pretreatment (filters)
- Prototype membrane module
- Vacuum system
- Analytics: T, P, RH, flow, composition

Challenges in membrane system for flue gas


Process condition	Challenges
Pressure	Low feed pressure, need high vacuum or feed compression to get high flux
Impurities in feed, SOx, NOx, particles	Durability/ high performance
Relative humidity (water content)	Maintain high RH in gas stream
Temperature	Heating /insulation of system to avoid water condensation
Membrane module	Good flow pattern depends on module design

www.ntnu.no


Process design and simulation

Modelling: approach & starting points

• Tens of cases modelled with modelling tool suite

- Parameters varied: membrane type and area, pressures, power consumption, ...
- 2 realistic cases selected for further economic modelling: 2- stage PPO – FSC, vacuum driving force, 70 & 85% recovery
- <u>NOTE</u>: membrane performance based on test rig measurements; much higher performance under better conditions

Techno-economic feasibility analysis

Component name	Case 70R cost (kEUR)	Case 85R cost (kEUR)	Lifetime (y)
Precooler	75	75	25
flue gas fan	566	597	10
Cooler	322	358	25
demister	112	112	25
membrane stage 1 total	4,388	7,606	
- membrane modules	1,316	2,282	5
- skid (excl. modules)	3,071	5,324	25
vacuum system 1	7,385	9,679	10
membrane stage 2 total	20,654	36,099	
- membrane modules	6,196	10,830	5
- skid (excl. modules)	14,458	25,269	25
vacuum system 2	2,137	2,650	10
precooling water pump	36	36	10
main cooling water pump	98	98	10
condensate pump	16	16	10
TOTAL	17,277	27,674	

Innovation and Creativity

Aspect	Case 70R	Case 85P	Unit
CAPEX	17,277	27,674	k€
OPEX	29,248	39,931	k€/y
Cost of CO ₂ captured	41	46	€/t
Elements included	Energy, cooling water, personnel, maintena	-	
Accuracy	>40	>40	%

- □ Power consumption constitutes 70% of the OPEX (0.1 €kWh), if electricity price goes down to 0.05 €kWh (realistic in Norway), CO₂ capture cost: 27 €t
- CAPEX and OPEX depend on cost model and electricity price
 Process can be further optimized related to pressure ratio and integration of compression heat (He et al.)

He X, Fu C, Hägg M-B. Chem Eng J. 2015;268(0):1-9. He X, Hägg M-B. Energy Procedia. 2014;63(0):174-85.

Conclusions

- *Test results*: operating issues resolvable, performance lower than expected most likely due to system design, membrane core technology proved functional
- *Modelling results*: power consumption and space usage acceptable
- *Benchmarking input*: positive (cost, HSE, flexibility); no showstoppers
- *Reference results*: good to excellent industrial performance and durability
- *Similar technologies*: perspective for improvement, commercial operation
- Conclusion: viable; needing higher TRL

Future perspectives / ongoing development

1. Membrane module design

Plate-and-frame module to hollow fiber (HF) module

- Commercial Air Products modules
- High packing density
- Better flow pattern

Future perspectives

- 2. Design two-stage membrane system (achieve high CO_2 purity and recovery) using commercial modules
- o test out different configurations: in series / parallel
- 3. System with operating parameters well controlled,
- o Temperature
- Pressure (compressor and vacuum pump)
- Relative humidity
- Feed flow
- Leakage free system

The next Phase: MemCCC

- Key elements:

17

Higher performance, (semi-) commercial hollow fiber modules and test rig, long term stable operation, power consumption

- Approach / planning
- o Consortium: NTNU, Air Products (Kristiansand), DNV GL
- Time frame: mid-2015 to end of 2016
- Key improvements:

Robust test rig operation, commercialization focus (consortium, process), local operational and plant-side engineering support

- Alignment with Norwegian policy

Thank you for your attention!

Acknowledgements: NORCEM

SINTEF

GASSNOVA

www.ntnu.no