

Stabilization of hazardous waste by using CO₂-rich flue gas – Carbon Capture and Storage

Morten Breinholt Jensen

Norcem CO₂ Capture Project International CCS Conference May 20 – 21st 2015

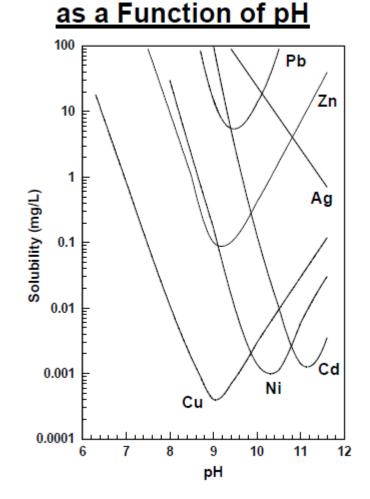
Langøya Island

Neutralisation process

200 000 m³/year 25 % H_2SO_4 300 000 tonnes/year fly ash

Sulphuric acid is neutralised by using alkaline fly ash from incinerators of solid municipal waste

 H_2SO_4 + CaO/fly ash \rightarrow CaSO₄ + stabilised fly ash


Quarry Fly-ash Slaked lime Slurry tank Limestone Limstone feeder Sampling and control station 1 Sea Temporary storage Gypsum conveyor Sedimentation basin Waste acid Gypsum Neutralization plant Tanks 1-4 Sea Surplus water

Properties of fly ash

- Fly ash contains:
 - 5-20 % CaO (pH 12.2-12.4)
 - 1-3 % heavy metals
- Leaching of heavy metals is high in alkaline environment
- pH needs to be lowered to about 10 to reduce leaching of heavy metals
- CO₂ is an excellent acid to neutralise fly ash
 - $CO_2 + CaO \rightarrow CaCO_3$
- CaCO₃ ensures an «infinite» pH buffer effect

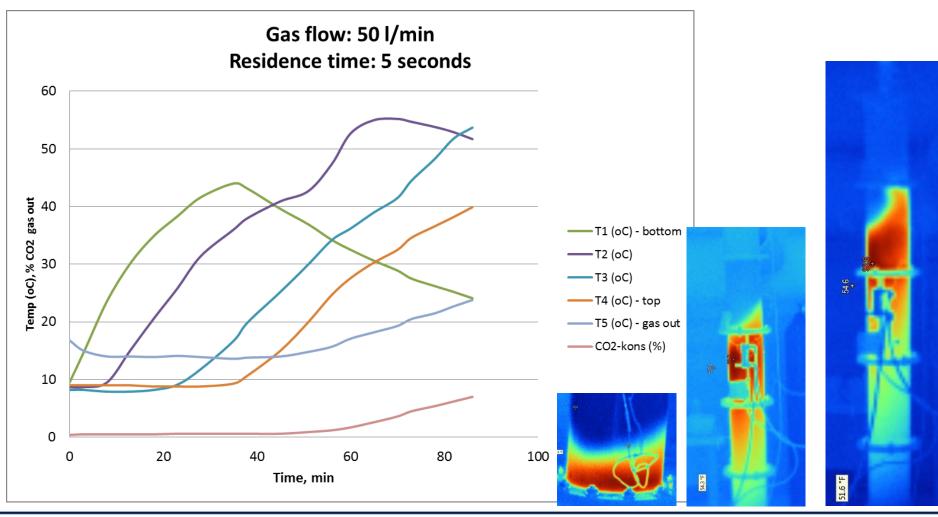
Solubility of Metal Hydroxides

Possible reaction routes

- Dry fly ash requires high temperatures (>400 °C)
 - $CO_{2(g)} + CaO_{(s)} \rightarrow CaCO_{3(s)}$
- Slurry diffusion limited, slow reaction

- Moist fly ash fast reaction and works and ambient temperature and pressure. Water phase reaction:
 - $CO_{2(aq)} + Ca(OH)_{2(aq)} \rightarrow CaCO_{3(s)} + H_2O_{(I)}$

Reaction kinetic experiments

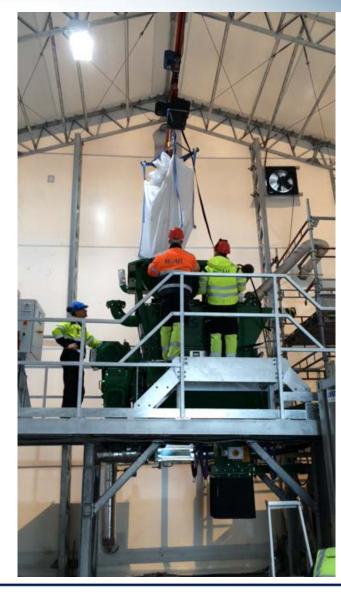

- Fly ash mixed with water
 - 40-60 kg
- Gas
 - 18 % CO₂ and 82 % Argon
 - Heated to 0-20 °C prior to reaction
- Fixed bed reactor
 - D_{inner} = 188 mm, H =1600 mm bed
- Flow
 - 50 l/min
 - Assuming 90 % packing → 27 cm/s (residence time: 5 seconds)

CLIMI

Results

Conclusions

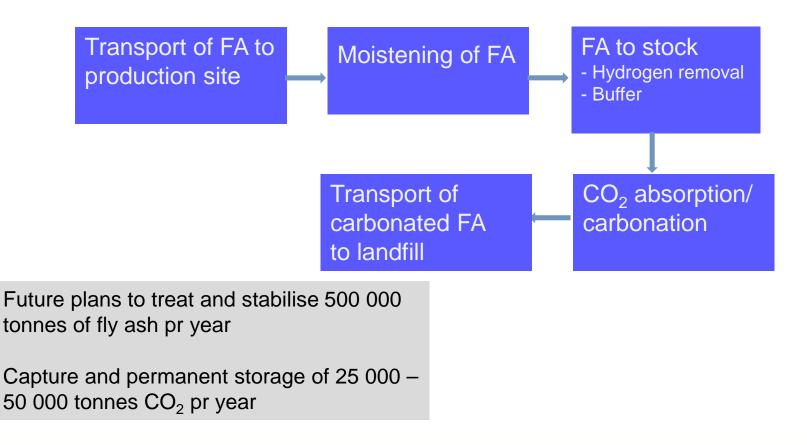
- Extremely rapid reaction \rightarrow commercially interesting
- Leaching of heavy metals after carbonation is very low similar to our established process on Langøya (H₂SO₄)
- CO₂ uptake of 50-100 grams/kg fly ash
- Fixed bed reactors have some major flaws:
 - Channelling of gas
 - Difficult to charge and discharge
- After two years of research and testing of different reactor concepts, we have opted for a paddle mixer reactor
 - Ensures homogenous reaction between CO₂ and fly ash



Demotest - Norcem

- NOAH received nearly MNOK 4 funding from Gassnova to verify whether CO₂ rich flue gas from Norcem can be used to stabilise fly ash
- Aker Solutions is also testing their amine technology in Brevik, and NOAH gets conditioned gas from Aker's direct contact cooler
- Installed a paddle mixer batch reactor
 - 1000-1500 kg of fly ash
 - Continuous feeding of gas (200-500 Nm³/h)
- Started up testing in May 2015 and will be testing until September 2015


CLIMIT


Preliminary results

- Robust system
- Easy to charge and discharge the reactor
- Distribution of gas to reactor works very well
- Paddle mixer reactor ensures that all fly ash gets in contact with the flue gas
- pH of the ash after carbonation is about 10
 - Low leaching of heavy metals
- One hour residence time

Process flow – full scale carbonation process of fly ash (FA)

Thank you for your attention!