

# **ECRA's Oxyfuel project**

International CCS Conference 20–21 May 2015 Langesund, Norway Martin Schneider ECRA was founded in 2003:

- as a platform to stimulate and undertake research activities in the context of the production of cement and its application in concrete
- to facilitate and accelerate innovation to guide the cement industry by creating and disseminating knowledge from research.
- ECRA initiates and provides seminars and workshops teaching state-of-the-art knowledge on cement and concrete technology and communicating the latest research findings
- ECRA undertakes dedicated research projects
- ECRA focuses on issues which individual companies may not be able to tackle alone and are of major importance to the cement industry as a whole

- All CCS roadmaps require a significant contribution from the industrial sector, including the cement industry.
- Against this background, ECRA is investigating the technical and economical feasibility of CCS technologies
- Focus on oxyfuel and post-combustion technologies
- Sustainability aspect of CCS technologies is included
- CO<sub>2</sub> transport and storage are not included in the research project
- Joint (European) research activities to meet the huge challenge of significant CO<sub>2</sub> reduction
- Strong cooperation with CSI, CEMBUREAU, PCA, etc. to communicate the cement industry's activities on CCS and CO<sub>2</sub> reduction

## **ECRA's CCS Project**



## **ECRA CCS Project Phase I to III**



### Is the application of Oxyfuel technology feasible?



🗘 ecra

# Academic Chair at the University of Mons



<u>U</u>MONS Université de Mons



- ECRA chair "CO<sub>2</sub> to Energy: Carbon Capture in Cement Production and its Re-use" established in 2013
- PhD students, graduate students, visiting professors
- Main research focus:
  - Oxygen production; subsequent comparison of different production techniques
  - Flue gas treatment for CO<sub>2</sub> capture (oxyfuel combustion, post-combustion technologies)
  - Re-use of CO<sub>2</sub>

## **Status of Phase IV.A - Work packages**

| No  | Sub-package (short title)                      | Who?                                                | Status           |
|-----|------------------------------------------------|-----------------------------------------------------|------------------|
|     |                                                |                                                     |                  |
| A 1 | Simulation study                               | Research Institute                                  | Finalised        |
| Α3  | Advanced cooler design                         | IKN                                                 | Finalised        |
| A 4 | Future oxygen supply                           | Danish Technical University                         | Almost finalised |
| A 5 | Experimental verification of sealing potential | Irish Cement + Research Institute                   | Finalised        |
| В   | Concept for a pilot plant:                     |                                                     |                  |
| B 1 | Plant capacity                                 | Aixergee                                            | Finalised        |
| B 2 | Design principle                               | Aixergee                                            | Finalised        |
| B 3 | Dimensioning                                   | CINAR + Fives FCB (supported by Research Institute) | Finalised        |
| B 4 | Control and safety devices                     | n.n.                                                | Retendering      |
| B 5 | Cost estimation                                | Subgroup                                            | Finalised        |
| B 6 | Concept for reuse                              | Subgroup                                            | Finalised        |
| D1  | CO <sub>2</sub> overall balance                | Student work/ UMons                                 | on going         |

### Design of an industrial scale Oxyfuel kiln

- **Brownfield:** New construction of a pilot plant using the infrastructure of an existing plant
- Blackfield: Retrofitting an old existing plant

### **Plant size**

500 to 1000 tpd production capacity due to

- Smaller scale-up gap to industrial size
- Possibly available old kiln existing



- Existing boundary conditions for installation etc. or high investment costs
- Utilization for commercial production after initial testing



# What would the industrial testing cost?

### **Operational costs:**

 Major cost driver of operational costs is oxygen costs

### **Investment costs:**

 Strongly depend on plant environment and equipment to be installed or modified

Estimated total budget required for 500 tpd testing facility:

**40 - 60 M €**(± 25 % uncertainty)



#### Equipment costs for brownfield

# What to do with the facility after testing?

### Potential options are:

- reuse for other research projects
- re-selling and reconstruction at another location
- operation for training aspects
- production of special cements or
- disposal of special wastes
- commercial operation

### **Options depend on:**

- plant structure and construction
- infrastructure and proximity





# Plant visits: From raw material supply to clinker handling

### Plant inspection :

- Plant capacity
- Necessary plant modification
- Expected impact on investment
- Plant impression
- Space requirement
- Interview with plant management:
- Logistics and staff availability
- Permitting procedure

- National funding scheme
- Plant availability/ access/ further use
- Openness/willingness regarding this project







### **Objective:**

- Technical feasibility study based on a specific plant location
- Evaluation of checklists from plant visits
- Economic feasibility study based on a specific plant location
- Reduction of cost uncertainty to ± 20 %

### **Deliverables:**

- Identification of units to be replaced, overhauled or newly installed and maintenance standard
- Identification of limiting factors (risk analysis)
- Rough estimation of costs and time schedule

Partner: ThyssenKrupp Industrial Solutions AG



# Next steps: Pre-engineering study

### **Objective:**

Basic engineering

### **Deliverables:**

- Concept for layout and civil works (incl. drawings)
- General assembly drawings (3D), flow sheets, floor plans and global instrumentation plan
- Safety concept
- Calculations of material and gas streams
- Rough dimensioning of the plant and estimation of duct work
- Detailed cost assembly (uncertainty to ± 15 %)
- Proposal for time schedule





### Next steps towards industrial testing



### **Communication and Dissemination**

#### www.ecra-online.de



есга

### **Technical reports** of phases I - III available

| European Cement Research Academy       | European Cement Research<br>Academy GmbH                                 |      |
|----------------------------------------|--------------------------------------------------------------------------|------|
|                                        | Tannerstrasse 2<br>40476 Duesseldorf, GERMANY                            |      |
|                                        | Phone: +49-211-23 98 38-0<br>Fax: +49-211-23 98 38-500                   |      |
|                                        | info@ecra-online.org<br>www.ecra-online.org                              |      |
|                                        | Chairman of the advisory board:<br>Daniel Gauthier                       |      |
|                                        | Managing director: Martin Schneider<br>Registration office: Duesseldorf  |      |
|                                        | Court of registration: Duesseldorf<br>Commercial registration no.: 47580 |      |
|                                        |                                                                          | ider |
|                                        |                                                                          | -    |
|                                        |                                                                          | _    |
| Technical Report                       |                                                                          |      |
|                                        |                                                                          |      |
| TR-ECRA-119/2012                       |                                                                          |      |
| ECRA CCS Project – Report on Phase III |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |
|                                        |                                                                          |      |

### **Economic challenges**

- Production costs will be increased by 36 to 110%
- Investment extremely high
- Currently, the legal and economic conditions regarding these technologies would impair the competiveness of cement production.

### **Technical challenges**

- CO<sub>2</sub> storage or reuse strategy and infrastructure
- Oxyfuel still requires R&D
- Post-combustion requires further development



# Thank you for your attention!



european cement research academy