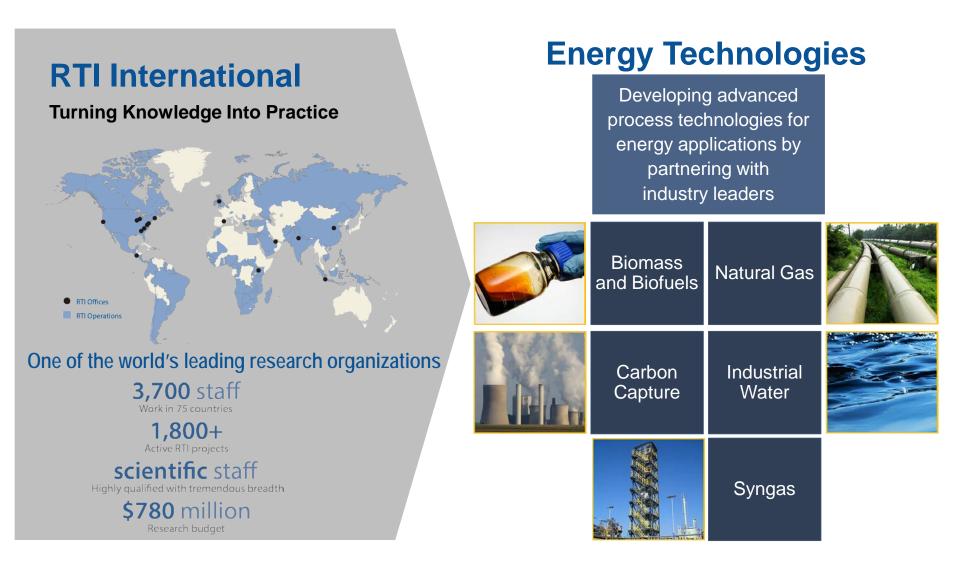


Results and Future Perspective of RTI's Advanced Solid Sorbent Project

Thomas Nelson – Project Manager

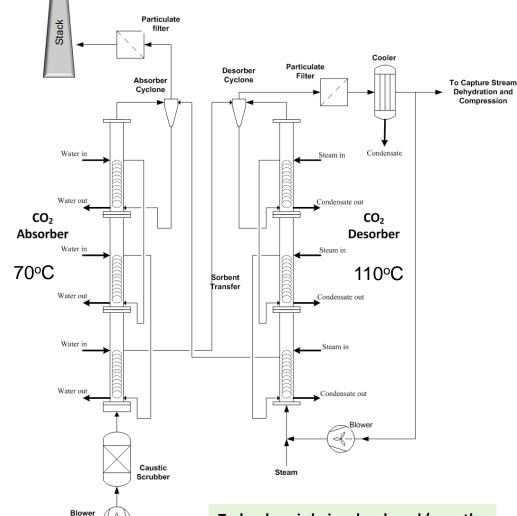
International CCS Conference

20th May, 2015


RTI International is a trade name of Research Triangle Institute.

www.rti.org Copyright © 2015 RTI. All rights reserved.

- Introduction to RTI
- Solid sorbent technology background
- Project background and scope
- Phase I project results
- Phase II project overview and path forward


Energy Research at RTI International

RTI International

Solid Sorbent CO₂ Capture Technology

Technology is being developed (over the last 5 years) from lab evaluations to prototype testing under funding from the U.S. Department of Energy

Technical Advantages

- Potential for reduced energy loads and lower capital and operating costs
- High CO₂ loading capacity; higher utilization of CO₂ capture sites
- Relatively low heat of absorption; no heat of vaporization penalty (as with aqueous amines)
- Avoidance of evaporative emissions
- Superior reactor design for optimized gas-solid heat and mass transfer and efficient operation

Economic Advantages

- RTI's technology represents > 25% reduction in cost of CO₂ capture, with > 40% reduction possible with advances in sorbent stability and reactor design
- ~ 40% reduction in energy penalty
- The total capture plant capital cost for our technology is significantly lower than state-of-the-art amines

Sorbent Chemistry

• Polyethyleneime (PEI)

 $\begin{array}{lll} \mbox{Primary:} & \mbox{CO}_2 + 2\mbox{RNH}_2 \rightleftarrows \mbox{NH}_4^+ + \mbox{R}_2\mbox{NCOO}^- \\ \mbox{Secondary:} & \mbox{CO}_2 + 2\mbox{R}_2\mbox{NH}_2^+ + \mbox{R}_2\mbox{NCOO}^- \\ \mbox{Tertiary:} & \mbox{CO}_2 + 2\mbox{R}_3\mbox{N} \rightleftarrows \mbox{R}_4\mbox{N}^+ + \mbox{R}_2\mbox{NCOO}^- \end{array}$

RTI's Project Overview

Objective

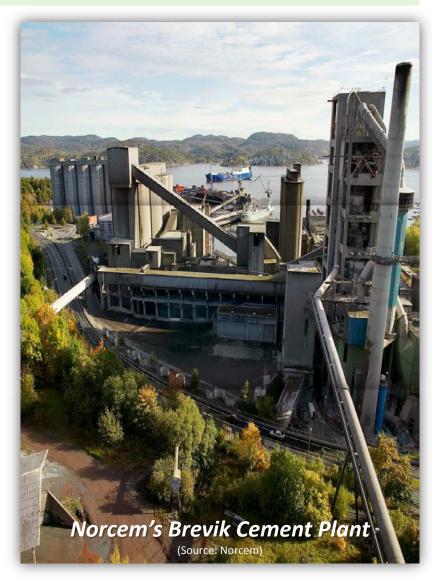
Demonstrate the technical and economic feasibility of RTI's advanced, solid sorbent CO₂ capture process in an operating cement plant

Period of Performance:

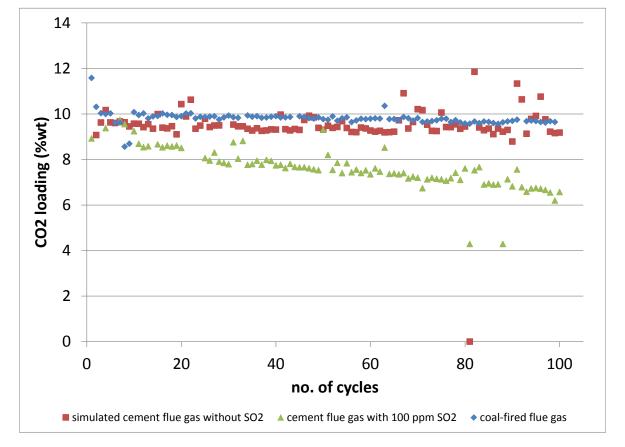
• 5/1/2013 to 10/31/2016

Location:

 Norcem's cement plant in Brevik, Norway


Project is structured in two phases:

Phase I


- Evaluate sorbent performance using simulated and actual cement plant flue gas (testing in Norway)
- Prove economic viability of RTI's technology through detailed economic analyses
- Develop commercial design for cement application

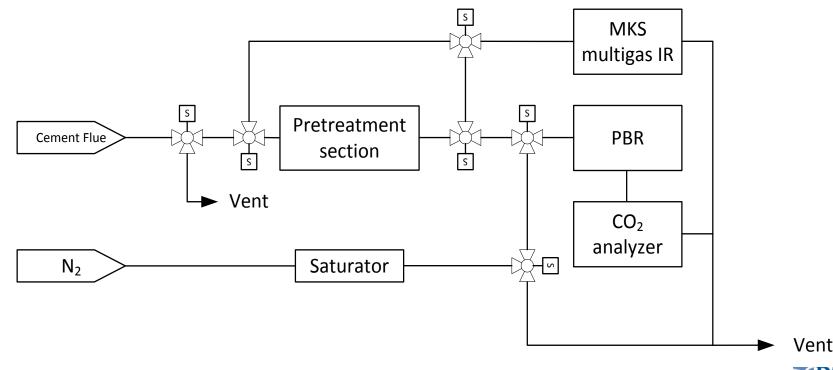
Phase II

- Design, build, and test a pilot-scale system of RTI's technology at Norcem's Brevik cement plant
- Demonstrate long-term stability and effective CO₂ capture performance
- Update economic analyses with pilot test data

Simulated Cement Flue Gas Testing at RTI

Component	"Clean" cement flue	Simulated cement flue gas (with SO ₂)	Simulated coal-fired flue
CO ₂ (%)	18	18	14.8
H ₂ O (%)	12	12	5.7
O ₂ (%)	9.2	9.2	2.6
N ₂ (%)	Balance	Balance	Balance
SO ₂ (ppm)	0	100	0

- Testing condition:
 - Absorption at 70 °C
 - Regeneration at 110 °C
 - GHSV = 3,500-5,000 h⁻¹
 - Reactor size: 0.5" ID, 8" L
- High water and oxygen content did not impact sorbent performance
- Presence of SO₂ causes rapid performance drop
- Spent sample after SO₂ run exhibits discoloration
- Gas pre-treatment is needed for economical operation

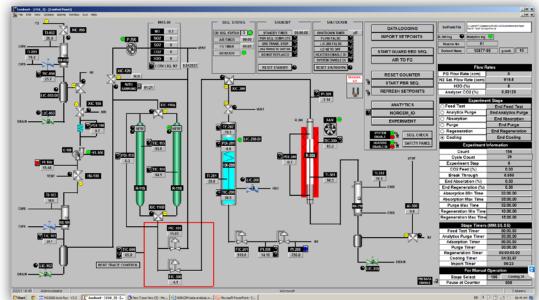

Sorbent Exposure Testing at Norcem

Objective

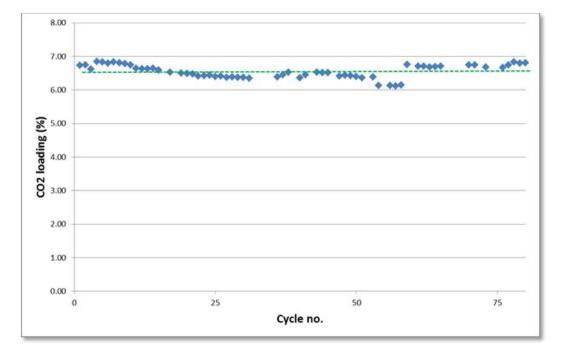
Conduct small-scale field exposure testing of RTI's solid sorbents at Norcem's cement plant utilizing a flue gas slipstream taken from the actual plant exhaust.

Approach

Design, fabricate construct, deliver, install, commission, and test a lab-scale system – the Automated Sorbent Test Rig (ASTR) – at Norcem's cement plant.


Sorbent Exposure Testing at Norcem

RTI's Automated Sorbent Test Rig (ASTR) installed at Norcem's cement production plant in Brevik, Norway


Specific Goals:

- Evaluate sorbent performance under actual cement flue gas conditions.
- Evaluate sorbent stability and contaminant tolerance.
- Determine if sorbent exhibits any critical performance failure due to exposure to real cement flue gas.
- Gain experience installing and commissioning a research unit in an industrial setting and prove that the system can operate in a stable manner.

Sorbent Exposure Testing at Norcem

Component	Cement flue gas
CO ₂ (%)	18-22
H ₂ O (%)	2-4
O ₂ (%)	6-10
NO (ppm)	0-5
NO ₂ (ppm)	0-20
N ₂ (%)	Balance
SO ₂ (ppm)	0-20

Testing conditions

٠

- Absorption temperature: 60 °C
- Regeneration temperature: 120 °C
- GHSV = 3,500-5,000 h⁻¹

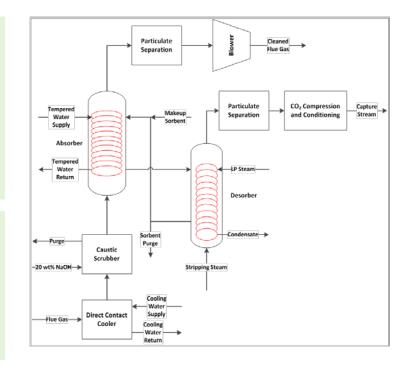
Phase I Objective	Results and Conclusions	
	 Designed, built, delivered, installed, and commissioned a fully functioning Automated Sorbent Test Rig (ASTR) at Norcem 	
Build and install a lab-scale process unit and test sorbent	 In total, roughly 300 absorption/regeneration test cycles were performed with CO₂ capture loading typically in the range of 5 to 7 wt% loading 	
performance on real flue gas at	• RTI sorbent exhibited no critical failure in CO ₂ capture performance	
Norcem's Brevik cement plant	• Low water content in flue gas did have some impact on CO ₂ loading	
	• RTI's ASTR system was commissioned in 5 days and maintained stable operation in Norway during intermittent testing over 4 months.	

Economic Analysis

Ob	jective

Deliver a preliminary technical and economic feasibility analysis of RTI's novel solid sorbent CO₂ capture technology installed at a commercial cement plant

Case Studies


- Case 1 (reference): Full-size cleaning (minimum 85 % CO2 capture), no waste heat available
- Case 2: Full-size cleaning (minimum 85 % CO2 capture), waste heat available
- Case 3: Reduced-size cleaning, based on a cost-optimal utilization of waste heat available

Approach:

- Followed guidelines of "Benchmark Indicator Report"
- Developed commercial design, sizing, and Aspen simulations for 3 case studies using reasonable technology assumptions
- Quantitative assessments for primary economic indicators:
 - capital and operating cost, cost per CO₂ avoided, energy consumed
- Qualitative assessments for other technology factors:
 - performance under varying conditions, health/safety risks, environmental risks, technology improvements

Results:

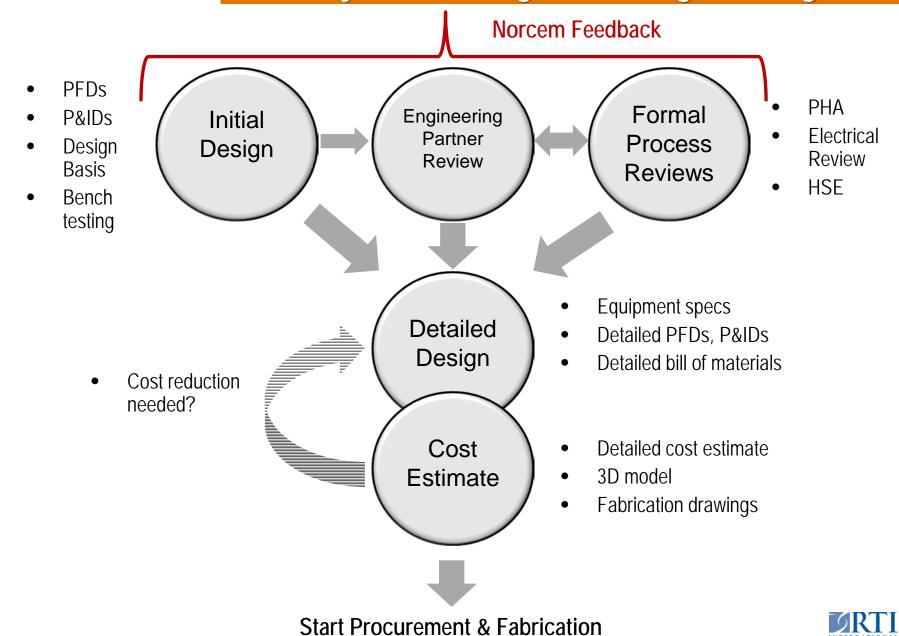
- Economic indicators of 38 46 €/t-CO₂ avoided show RTI's technology is economically competitive with conventional/next generation technologies
- RTI's technology is a good candidate for waste heat utilization
- Conditions at a cement plant require RTI's technology to include a steam boiler, pretreatment system, and waste heat recovery

Category / Economic Contribution	Case 1	Case 2	Case 3
Steam contribution (%)	41%	30%	0%
Electricity contribution (%)	29%	33%	36%
Other variable/fixed OPEX contribution (%)	11%	12%	23%
CAPEX contribution (%)	19%	25%	41%
Normalized cost per mass of CO ₂ avoided	1.00	0.89	0.84

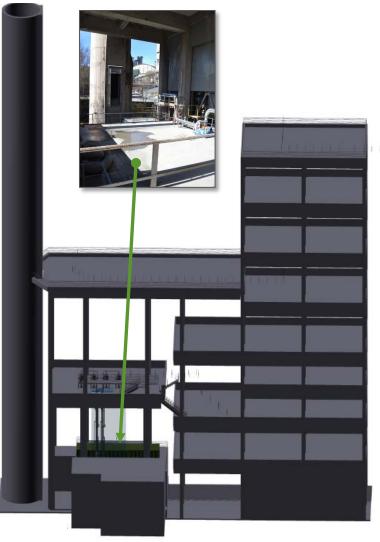
Phase II Overview

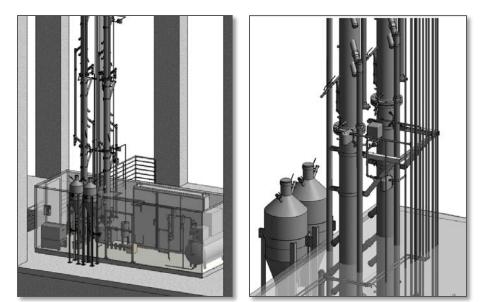
Objective

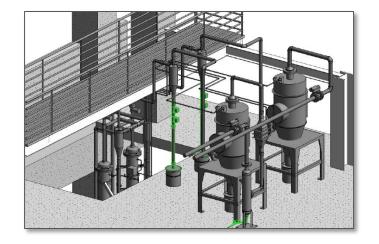
Demonstrate, on a pilot-scale, the effective and continuous removal of CO_2 from Norcem's cement plant flue gas using RTI's solid sorbent technology.


Task Description	Goals / Current Progress
Simulated cement flue gas testing using RTI's existing bench-scale prototype	 Utilize RTI's existing bench-scale system to simulate cement FG and collect additional process design data. Higher CO₂ content exhibits more driving force for CO₂ separation in flue gas. <i>Progress</i>: Bench-scale operation providing lessons for pilot system.
Field testing of RTI's pilot system at Norcem's Brevik plant	 Design, build, and test a pilot system at Norcem's Brevik plant – demonstrating long-term stability and viable CO₂ capture and regeneration performance. Testing in Norway to consist of parametric and long- term testing campaigns. <i>Progress</i>: Near completion of detailed design and engineering phase.
Updated economic analyses	 Update the economic analysis with pilot test data – further evaluating the technology's economic viability. Updates to 31 benchmark economic indicators expected based on data from pilot testing. <i>Progress</i>: some updates made to original economic analysis report based on Tel-Tek feedback.

RTI's Bench-scale Prototype System in USA

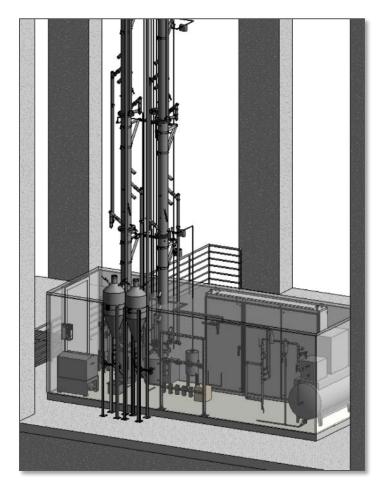

Pilot System Design and Engineering




12

Pilot System Design and Engineering

Norcem test site



Pilot System Design, Build, and Testing

Initial pilot system specifications:

- Design based on RTI's bench-scale system
- Footprint: ~ 7.5m X 4m
- Height: ~ 13m
- Flue gas throughput: ~ 600 to 1,600 SLPM
- Sorbent inventory: ~ 300 kg
- Power: ~ 60 to 90 kWe
- Cooling water: 250 to 650 kg/h
- Additional utilities:
 - Low-pressure steam; compressed air; waster disposal

Pilot system activities (Present \rightarrow October 2016):

- Procurement, fabrication, construction of pilot system in US.
- Production of pilot-scale sorbent inventory.
- Shakedown of RTI's pilot system in US.
- Shipping and delivery of RTI's pilot system to Norcem.
- Commissioning and training of Norcem operational staff.
- Early-stage parametric testing of RTI's pilot system at Norcem.
- Long-term performance stability testing of RTI's pilot system at Norcem.
- RTI pilot system decommissioning:

Acknowledgements

Funding Support

- Gassnova (through CLIMIT)
- Norcem

RTI Team	 Atish Kataria Paul Mobley Jak Tanthana Marty Lail Martin Lee 	Norcem Team	 Liv-Margrethe Hatlevik Bjerge Trond Tangen Camilla Solheim Jan-Erik Rønning Knut Steinar Bakke Grini
	Pradeep SharmaMustapha Soukri	Tel-Tek Team	Lars-André TokheimNils Henrik Eldrup

RTI Contact Information

Thomas Nelson

Project Manager +1 713.942.7864 tnelson@rti.org

