

Norcem CO₂ capture project: International CCS Conference, Langesund, 20-21 May 2015

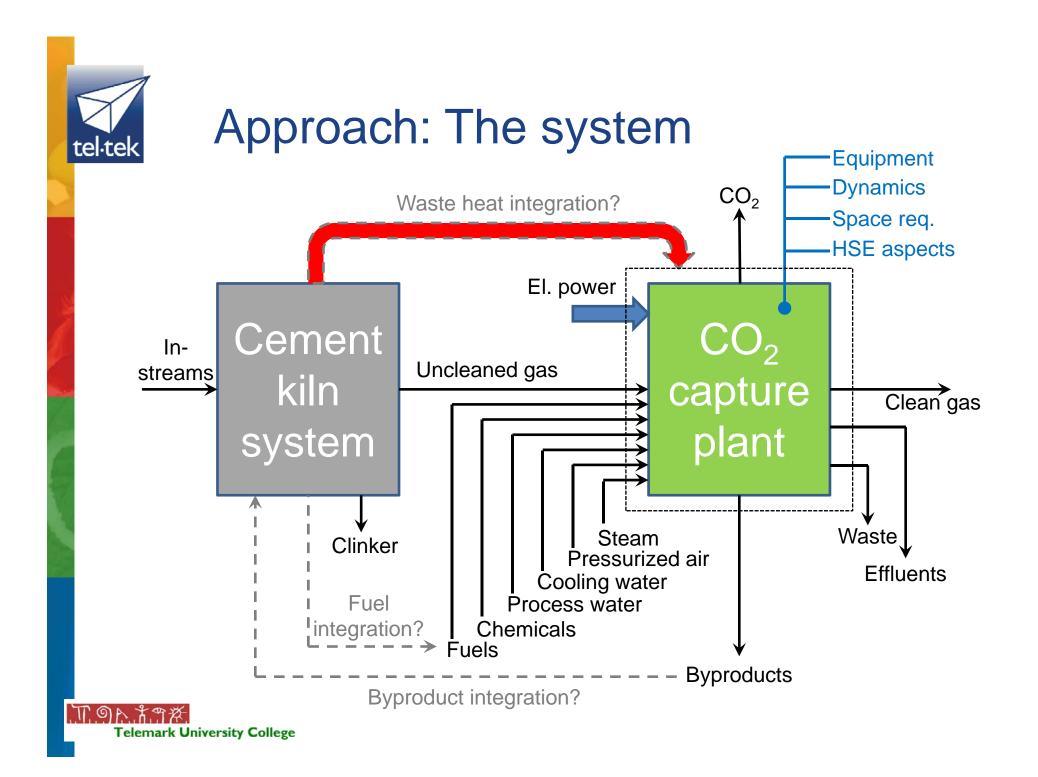
Benchmark Study – Commercial Scale Perspective Preliminary results from WP7 Benchmark Study

Lars-André Tokheim¹, Nils Eldrup² and Anette Mathisen²

¹ Telemark University College & Tel-Tek ² Tel-Tek

- 1. Purpose of the benchmark study
- 2. Approach
- 3. Selected benchmarking results
- 4. Sensitivity analysis
- 5. Key points

Purpose of the benchmark study


- Compare technologies with regard to technical, economical and environmental impacts
- Technology providers (TP's):

ТР	Technology	
Aker	Amine absorption	
RTI	Low-temperature capture using a solid sorbent	
MC	Membrane separation	
Alstom	High-temperature capture using a solid sorbent («Regenerative Carbonate Cycling» (RCC), <i>i.e.</i> Calcium Looping)	Alstom not considered today

MC = *Membrane consortium: NTNU, DNV-GL and Yodfat*

- About «commercial scale»:
 - Different technologies applied to a medium size cement plant
 - Not necessarily 85 or 90 % capture, could be for example 30 og 40 % capture – if this makes more sense from an economic, environmental and technical point of view
 - Maturity → Technology readiness level

Telemark University College

Approach: Preconditions

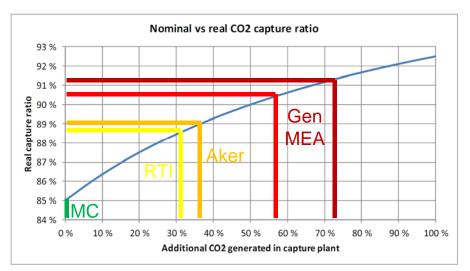
- Characteristics of uncleaned gas same as for Kiln #6 at Norcem Brevik
- CO₂ stream:
 - > 95 % CO₂
 - Compression to 100 bar and ambient temperature
 - Guidance values for concentrations of other species
- CO₂ capture ratio three cases:
 - 1. 85 % without waste heat utilization

Basis for comparing technologies

- 2. 85 % with Norcem waste heat utilization
- 3. x %, with Norcem waste heat as the only regeneration energy, x defined by TP
- <u>Tel-Tek</u> cost estimation
 - Basis: Equipment units from TP's
 - Adjust scope / equipment size when necessary
 - Same cost estimation method applied to all technologies

TElemark University College

ullet


Scope adjustment

Two cases calculated by Tel-Tek to compare with «standard technology»

- Thermal energy → Coal-fired steam generation plant
 - Capture of additional CO₂
 - Equipment size adjustment when required
 - Potential change in pollutant concentrations not considered in the scale-up
- Same CO₂ compression unit for all technologies

	ТР	SRD* [GJ/t _{CO2}]
<	Generic MEA	4.2 and 3.7
	Aker	2.7
	RTI	2.4
	MC	0

* SRD: Specific Regenerator Duty

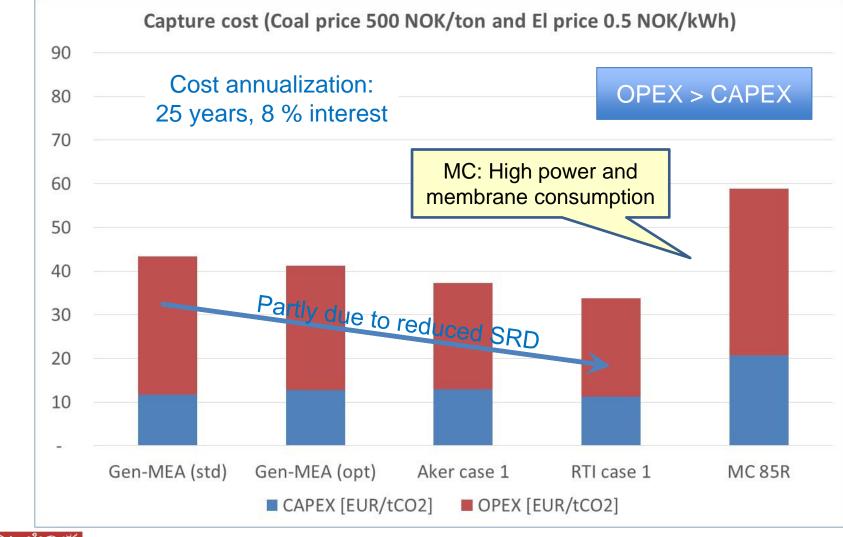
TONTY Telemark University College

tel·tek	Cases			То	•	us on refer omparison	
	Case	(Generic MEA)	Aker	RTI	MC	Alstom	
	1: 85 % capture, no waste heat utilization	(Yes)	Yes	Yes	Yes	NA	
	2: 85 % capture, utilizing waste heat for regeneration		Yes	Yes	NA	Yes	_
	3: Capture using only waste heat for regeneration, if possible		Yes (48 %)	Yes (30 %)	NA		
	(Additional case reported)				70 % capture		
	NA: Not applicable accord	ing to TP					

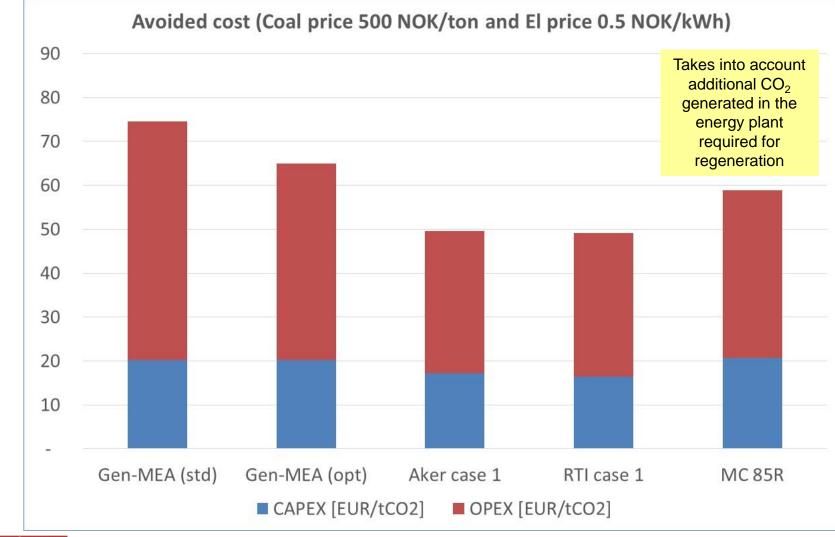
- Comparison:
 - Horizontal (different TP's)
 - Vertical (different cases for a given TP)

TElemark University College

Avoided CO₂: Plant level vs globally

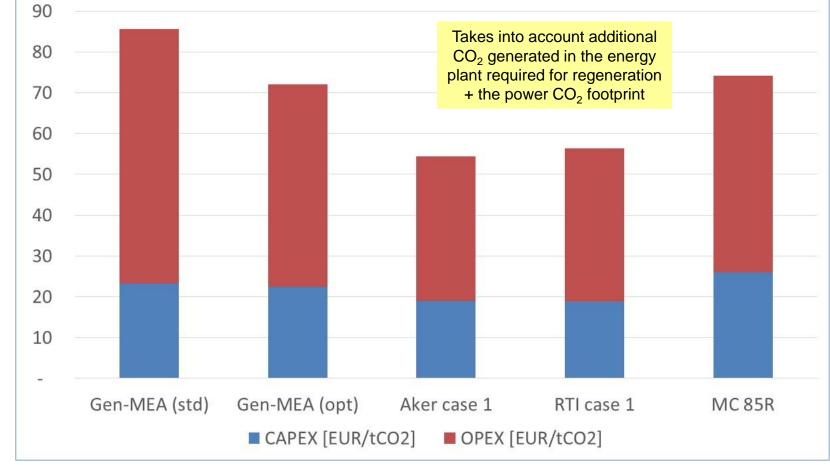

Benchmarking of CO2 capture technologies -Impact of electric power CO2 emission factor

冗のた清雪茶 Telemark University College


Cost comparison: Capture cost

冗のた清雪茶 Telemark University College

Cost comparison: Avoided cost



TTのた清雪茶 Telemark University College

Cost comparison: Avoided cost, including effect of power CO₂ footprint

Avoided cost incl. power CO2 footprint (Coal price 500 NOK/ton and El price 0.5 NOK/kWh; El. power emission factor 500 gCO2/kWh)

Main cost drivers

TP (Case 1)	Main CAPEX drivers	
Generic MEA	 Absorber (14-15 %) CO₂ compressors (13-14 %) Reboiler (9-10 %) 	כ
Aker	 CO₂ compressors (13 %) Reboiler (11 %) Desorber (11 %)]
RTI	 CO₂ compressors (16 %) Adsorber (9 %) Acid gas scrubber (9 %)]
MC	 Membrane stage 2 (48 %) Membrane stage 1 (13 %) CO₂ compressors (10 %) 	ן
TP (case 1)	Main OPEX drivers	
Aker, RTI and Generic MEA	 Coal-fired energy plant (36-50 CO₂ compression unit (22-32 s) 	
MC	 Membrane unit compressors (CO₂ compression unit (20 %) 	59 %)

OPEX

CAPEX

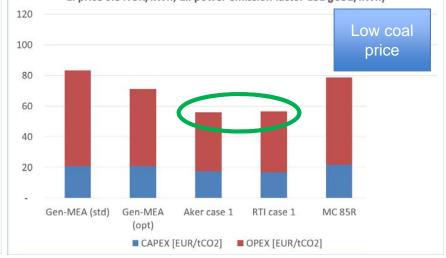
TTのた清雪茶 Telemark University College

Sensitivity analysis

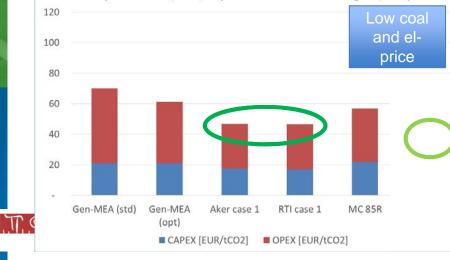
Parameter	Low value	High value
El. power price NOK/kWh (€/kWh)	0.4 (0.05)	0.8 (0.10)
Coal price NOK/t (€/t)	400 (50)	1000 (125)

- Power footprint according to Norwegian product mix
- Extra MC case calculated:
 - Membrane permeance increased by a factor of 10 (technology development over the last few years)

Sensitivity analysis: Summary


Avoided cost incl. power CO2 footprint (Coal price 1000 NOK/ton and El price 0.4 NOK/kWh; El. power emission factor 131 gCO2/kWh) 120 Low el-100 price 80 60 40 20 Gen-MEA (std) Gen-MEA Aker case 1 RTI case 1 **MC 85R** (opt) ■ CAPEX [EUR/tCO2] ■ OPEX [EUR/tCO2]

Avoided cost incl. power CO2 footprint (Coal price 1000 NOK/ton and El price 0.8 NOK/kWh; El. power emission factor 131 gCO2/kWh) 120 High coal and el-100 price 80 60 40 20 Gen-MEA (std) Gen-MEA Aker case 1 RTI case 1 **MC 85R**


Avoided cost incl. power CO2 footprint (Coal price 400 NOK/ton and El price 0.8 NOK/kWh; El. power emission factor 131 gCO2/kWh)

CAPEX [EUR/tCO2] OPEX [EUR/tCO2]

(opt)

Avoided cost incl. power CO2 footprint (Coal price 400 NOK/ton and El price 0.4 NOK/kWh; El. power emission factor 131 gCO2/kWh)

MA.

Technology Readiness Level (TRL)

Table 4.1: Technology readiness level	(TRL) as defined by the	US DOE [7].
---------------------------------------	-------------------------	-------------

	Induc	4.1. Technology reductiess level (TRL) as defined by the OS DOL [7].
	TRL	Description
	1	Scientific research begins translation to applied R&D - Lowest level of technology readiness. Scientific research begins to be translated into applied research and development. Examples might include paper studies of a technology's basic properties.
	2	Invention begins - Once basic principles are observed, practical applications can be invented. Applications are speculative and there may be no proof or detailed analysis to support the assumptions. Examples are limited to analytic studies.
	3	Active R&D is initiated - Active research and development is initiated. This includes analytical studies and laboratory studies to physically validate analytical predictions of separate elements of the technology. Examples include components that are not yet integrated or representative.
	4	Basic technological components are integrated - Basic technological components are integrated to establish that the pieces will work together.
MC: 5 RTI: 5	5	Fidelity of breadboard technology improves significantly - The basic technological components are integrated with reasonably realistic supporting elements so it can be tested in a simulated environment. Examples include "high fidelity" laboratory integration of components.
Pilot at Norcem?	6	Model/prototype is tested in relevant environment - Representative model or proto- type system, which is well beyond that of TRL 5, is tested in a relevant environment. Represents a major step up in a technology's demonstrated readiness. Examples include testing a prototype in a high-fidelity laboratory environment or in simulated operational environment.
	7	Prototype near or at planned operational system - Represents a major step up from TRL 6, requiring demonstration of an actual system prototype in an operational environment.
Aker: 8	8	Technology is proven to work - Actual technology completed and qualified through test and demonstration.
入着 許 Telemark University College	9	Actual application of technology is in its final form - Technology proven through suc- cessful operations.

ТР	Key points
Aker	 Thermal energy required for regeneration → Additional CO₂ Quite low SRD (2.7 GJ/t_{CO2capt}) due to solvent characteristics and process integration with CO₂ compression unit Full utilization of cement kiln waste heat (case 2/3) → additional cost reduction Mature technology (TRL = 8) Successful MTU tests at Norcem Next step full-scale capture in the cement industry?
RTI	 Thermal energy required for regeneration → Additional CO₂ Quite low SRD (2.4 GJ/t_{CO2capt}) due to sorbent characteristics Utilization of cement kiln waste heat (case 2) → additional cost reduction Promising results from small-scale tests at Norcem TRL improvement by next test phase at Norcem?
MC	 SRD = 0 → No thermal energy required for regeneration But high power consumption → Power CO₂ footprint + suffers at high power prices No circulating medium → Reduced system complexity and more compact system Higher membrane permeance → Significant cost reduction potential Quite promising results from small-scale tests at Norcem, demonstrating improved permeance TRL improvement by new tests at Norcem?
Alstom	 Potential for energy efficient capture due to high temperature capture Requires integration with kiln system

Telemark University College